Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(1): 101346, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38128531

RESUMO

The only FDA-approved oral immunotherapy for a food allergy provides protection against accidental exposure to peanuts. However, this therapy often causes discomfort or side effects and requires long-term commitment. Better preventive and therapeutic solutions are urgently needed. We develop a tolerance-inducing vaccine technology that utilizes glycosylation-modified antigens to induce antigen-specific non-responsiveness. The glycosylation-modified antigens are administered intravenously (i.v.) or subcutaneously (s.c.) and traffic to the liver or lymph nodes, respectively, leading to preferential internalization by antigen-presenting cells, educating the immune system to respond in an innocuous way. In a mouse model of cow's milk allergy, treatment with glycosylation-modified ß-lactoglobulin (BLG) is effective in preventing the onset of allergy. In addition, s.c. administration of glycosylation-modified BLG shows superior safety and potential in treating existing allergies in combination with anti-CD20 co-therapy. This platform provides an antigen-specific immunomodulatory strategy to prevent and treat food allergies.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Hipersensibilidade a Leite , Vacinas , Camundongos , Animais , Feminino , Bovinos , Anafilaxia/prevenção & controle , Glicosilação , Hipersensibilidade Alimentar/prevenção & controle , Hipersensibilidade a Leite/prevenção & controle , Lactoglobulinas/metabolismo
2.
Nat Biomed Eng ; 7(1): 38-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36550307

RESUMO

The microbiome modulates host immunity and aids the maintenance of tolerance in the gut, where microbial and food-derived antigens are abundant. Yet modern dietary factors and the excessive use of antibiotics have contributed to the rising incidence of food allergies, inflammatory bowel disease and other non-communicable chronic diseases associated with the depletion of beneficial taxa, including butyrate-producing Clostridia. Here we show that intragastrically delivered neutral and negatively charged polymeric micelles releasing butyrate in different regions of the intestinal tract restore barrier-protective responses in mouse models of colitis and of peanut allergy. Treatment with the butyrate-releasing micelles increased the abundance of butyrate-producing taxa in Clostridium cluster XIVa, protected mice from an anaphylactic reaction to a peanut challenge and reduced disease severity in a T-cell-transfer model of colitis. By restoring microbial and mucosal homoeostasis, butyrate-releasing micelles may function as an antigen-agnostic approach for the treatment of allergic and inflammatory diseases.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Hipersensibilidade a Amendoim , Camundongos , Animais , Micelas , Butiratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA